Binary grey wolf optimizer with a novel population adaptation strategy for feature selection
نویسندگان
چکیده
Feature selection is a fundamental pre-processing step in machine learning that aims to reduce the dimensionality of dataset by selecting most effective features from original features. This process regarded as combinatorial optimization problem, and grey wolf optimizer (GWO), novel meta-heuristic algorithm, has gained popularity feature due its fast convergence speed easy implementation. In this paper, an improved binary GWO algorithm incorporating Population Adaptation strategy called PA-BGWO proposed. The takes into account characteristics problem designs three strategies. proposed includes adaptive individual update procedure enhance exploitation ability accelerate speed, head fine-tuned mechanism exert impact on each independent objective function, filter-based method ReliefF for calculating weights with dynamically adjusted mutation probabilities based ranking effectively escape local optima. Experimental comparisons several state-of-the-art methods 15 classification problems demonstrate approach can select small subset higher accuracy cases.
منابع مشابه
Binary grey wolf optimization approaches for feature selection
In this work, a novel binary version of the grey wolf optimization (GWO) is proposed and used to select optimal feature subset for classification purposes. Grey wolf optimizer (GWO) is one of the latest bioinspired optimization techniques, which simulate the hunting process of grey wolves in nature. The binary version introduced here is performed using two different approaches. In the first app...
متن کاملGrey Wolf Optimizer
This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملModified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by th...
متن کاملDistributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer
This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Control Theory and Applications
سال: 2023
ISSN: ['1751-8644', '1751-8652']
DOI: https://doi.org/10.1049/cth2.12498